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Abstract — The paper discusses a new approach to the
global stability analysis of large nonlinear microwave cir-
cuits for which Nyquist’s analysis is not usable owing to the
size of the characteristic equation. Making use of a Krylov
method for autonomous circuits, a state lying on the bifur-
cated branch close enough to the bifurcation may be effi-
ciently located. The bifurcated branch may then be found by
ordkary continuation.

I. INTRODUCTION

In recent years, the harmonic-balance (HB) technique

coupled with Krylov-subspace methods has gained wide-

spread acceptance as a numerical tool for the analysis of

nonlinear microwave circuits containing large numbers of

devices andlor supporting steady states with discrete

spectra including large numbers of lines [1], [2]. How-

ever, the extension of these techniques to stability analysis

hasremained until now an unsolved problem. With har-

monic balance, stability is normally investigated with the

aid of Nyquist’s analysis [3], [4]. A Nyquist plot may be

numerically built by computing the determinant of the

characteristic equation for a given steady state as a iimc-
tion of a perturbing frequency. After suitably parametriz-

ing the circuit, the bifurcations may be located by search-
ing for those combinations of fi-equency and parameter

values for which the plot contains the origin of the com-

plex plane [3], [4]. When the number of unknowns be-

comes very large, in order to waive the need for storing

and factorizing the Jacobian matrix, HB analysis may be

carried out by Krylov-subspace methods [1], [2]. Unfortu-

nately, these methods do not provide an efficient way of

computing the determinant of a large complex matrix,

which prevents the use of Nyquist’s analysis. In this paper
we propose for the first time a family of algorithms based

on Krylov-subspace HB whereby the fimdamental bifiu--
cations of a large-size circuit can be efficiently located.

Hopf and period-doubling bifurcations are found by a

Krylov-subspace technique specifically devised for au-

tonomous nonlinear circuits. Regular turning points are

detected by a suitable extension of a switching-parameter
algorithm that was previously demonstrated in conjunc-

tion with ordinary HB.

II. BIFURCATIONDETECTIONFORA LARGE CIRCUIT

Let the circuit be parametrized by some physical or

electrical parameter u. On a given solution path, the bifur-
cating values of the parameter can be found with excellent

approximation by the following approaches, relying upon

Krylov-subspace HB as the basic analysis algorithm.

A. Hopf bijiurcations of a DC solution path

In the state space, a periodic solution path bifurcates

from the DC solution path at a Hopf bifurcation [5]. Let us

consider a periodic steady state of timdamental frequency

o+ belonging to the bifurcated branch. Let E be the vector

of real and imaginary parts of the HB errors, and X the

state vector containing the real and imaginary parts of the

state variable (SV) harmonics. E and X have a same di-

mension N. The HB solving system for such steady state

may be cast in the form

E(X, ~, U) = O (1)

The normal procedure to be followed in the construction

of the periodic solution path would be to assign the free

parameter u, and to solve then (1) for X, ~. Note that the

circuit is always autonomous with respect to the free os-
cillation, so that ~ is always a problem unknown, and the

phase ~ of a reference harmonic XR at frequency ~ is

indeterminate. $R is thus kept fixed to some arbitrary

value, so that the correct number of unknowns is restored.

Within the frame of ordinary HB techniques for autono-

mous circuits, the solution may be found by a Newton

iteration after suitably modifying the state vector [6], or

by resorting to continuation with artificial embedding [7]

(usually, by introducing in the circuit suitable fictitious
sources or “probes”). However, for reasons to be ex-
plained later on, in view of the application to large sys-

tems (say, N > 25,000) we do not want to modifi the
structure of the system (1) - specifically, of its Jacobian

matrix. We do not want to use continuation, either, in or-

der to minimize the number of CPU-intensive iterative

solutions of (1). In order to overcome this problem, we
retain the original formulation of the HB system, and re-

move the phase indeterminacy by adding to (1) an auxil-
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iary equation whereby the phase of X~ is fixed to the se-

lected value ~. This equation has the simple form

sin($~ ) Re[X~ ] - cos($~ ) Im[X~ ] = O (2)

Let us now define M~ = jX~l. When the circuit state ap-

proaches a Hopf bifurcation on the periodic solution path,

then simultaneously u -) UB, ~ + ~, M~ + O, where

the subscript “B” denotes the bifurcating values. It is thus
obvious that an approximate evaluation of UB, ~, can be

obtained by searching for a periodic regime having near-

zero MR. In other words, we can approximately locate the

Hopf bifurcation by interchanging the roles of M~ and u,

and treating the former as a known quantity to be fixed to

some suitably small value, and the latter as a fk-ther

problem unknown. Once again, this can be done by add-

ing to (l), (2) a further auxilia~ equation of the form

(Re[XR])2+ (Im[X~l)2 - M: = o (3)

In summary, the Hopf bifurcation can be approximately

located by solving the nonlinear system of N + 2 equa-

tions in as many unknowns X, ~, u

I
E(X, COF,U)= O

sin($~ ) Re[X~ ] - cos($~ ) Im[X~ ] = O (4)

(Re[X~)2 + (Im[X~~2 - M; = O

Note that M~ cannot be set to zero, since the Jacobian

matrix would then become singular. Nevertheless, Hopf’s
theorem shows that ihI/~M~ = O at criticality [5], which

implies that the bifurcating parameter Value uB can be

determined with excellent accuracy making use of rela-

tively large values of MR. The Jacobian matrix of (4) has

the form

l-k--!-+
aE iJE

J= ‘Ex aOF m (5)

ROO

In (5), JEX = aE/aX is the N x N Jacobian matrix of the

standard HB system (1), aE/iI~ and aE/i)u are column

vectors of size N, and R is a 2 x N matrix that can be
readily obtained by inspection of (4). In the solution of (4)

by iterative methods, most of the CPU time is spent in the

multiplication of J times a sequence of real vectors [8]. In

turn, due to (5), the dominant contribution to the cost of

this process is given by the multiplication of JEX, which

can be accomplished by the efficient algorithms already

demonstrated for the non-autonomous case [2]. The over-

head due to the increased number of equations of (4) with

respect to (1) is only 2N + 4 flops (1 flop = 1 floating-
point multiplication plus 1 addition), which is practically

negligible when N exceeds a few thousand. In this way a

Hopf bifurcation may be efficiently located by a single

inexact Newton iteration [2]. A similar algorithm can be

used to detect the Hopf bifurcations of periodic solution

paths. This technique is fast enough to allow the direct

computation of Hopf bifurcations loci in a two-dimen-

sional parameter space, which may often provide a useful

support to the solution of design problems [9].

In order to accurately locate the bifurcation it is neces-

sary that the analysis algorithm exhibits good convergence

properties in a range of values of MR where WaMR = O,

which normally means, quite close to the bifurcation.

When using a Krylov-subspace technique to solve the

system (4), this may not be true for the GMRES iteration

associated with an ordinary polynomial barracking scheme

[8] because the Jacobian matrix tends to be ill-conditioned

in the neighborhood of the biiiucation. For this reason a

novel trust-region algorithm [10] was implemented to in-

crease the robustness of the Krylov-subspace solution
method in the vicinity of a singularity of the Jacobian ma-

trix. This algorithm is briefly discussed in section III.

B. Period-doubling bljiurcations

A period-doubling (I-type) bifurcation of a periodic

solution path [5] can be found by a similar algorithm. In

this case ~ = 0)S/2, where (oS is the source frequency, so

that the unknowns are X, u. Furthermore, the frequency

division process is coherent, so that in this case there is no

phase indeterminacy, and ~ is a problem unknown. The

nonlinear system used to locate the bifurcation thus be-
comes

[
E(X, ;, U)=O

(6)

In turn, the Jacobian matrix is obtained from (5) by sup-

pressing the second column (and the first row of R). The

rest of the preceding discussion remains valid.

C. Regular turning points

In principle, regular turning points could be automati-
cally detected during the construction of a solution path

by ordinary continuation, since llDu/DXll = O at these

points (D denotes the derivative taken along the solution

path). However, at turning points the harmonic Jacobian is

singular [5], so that these points cannot be approached by

an analysis technique based on the Newton iteration. An

efficient way of circumventing this problem is to perform

a parameter switch near criticality, i.e., to replace u by a
different parameter whose derivative does not vanish at
the turning point [11 ]. A convenient choice is to use once
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again the magnitude MR of the reference harmonic. If the

system is autonomous ~ is unknown, so that the HB

system to be solved in the neighborhood of the bifurcation

is (4) with an arbitrary constant value of ~. If the circuit

is forced, ~ represents the forcing frequency (or the

vector of independent forcing frequencies for a multitone
regime) and is a priori known; the solving system is then

obtained from (4) by suppressing the second equation. In

both cases, u becomes a problem unknown and MR plays

the role of a known fkee parameter to be stepped across a

suitable range containing the critical point. In order to

detect the condition of approaching criticality, the quantity

5 = llDu/DXll is monitored during the construction of the

solution path. The parameter switching is automatically

activated when 61 drops below some empirically defined

threshold, and is suppressed in the opposite condition.

III. A GLOBALLY CONVERGENTTRUST-REGION
ALGORITHM

In order to improve the robustness of nonlinear solvers

based on GMRES or similar iterative algorithms, a one-

dimensional minimization of the error vector norm along

the Newton update direction (backtracking) is usually

carried out after each Newton step [8]. Nevertheless, for
relatively i] l-conclitioned problems this approach may fail,

and more robust search schemes must be implemented in

support of the Newton iteration. A possible solution is to

resort to the trust-region algorithm discussed in this sec-

tion [10]. Let us rewrite the solving system (either (4) or

(6) according to the previous discussion) in the unified
form

F(U) = O (7)

In a neighborhood of a generic iterate U, we may replace

F by the linear model

F(U + d) = F(U) + J(U)d (8)

where d is a sufficiently small increment. In turn, from (8)

we obtain a local quadratic model of the scalar function to

be minimized

f(U+d)= ;F&(U+d)F(U+d)=

= : Fti(U)F(U) + Ftr(U)J(U)d + : dtrJti(U)J(U)d

(9)

where ‘r denotes transposition. The spherical domain of

radius z where (9) represents a reliable approximation will

be called a trust region. Let us denote by N the Newton
update generated by the GMRES iteration. If IIN–UII S ‘t,

then d = N–U minimizes (9) within the trust region. Oth-

erwise the increment d that minimizes f within the trust is

given by [10]

d(~) = - ~tr (U)J(U) + ~1]-1 J& (U)F(U) (10)

where I is the identity matrix, for the unique p >0 such

that lld(~)lj = z.

In practice, since ~ cannot be computed exactly, d(~) is

approximated in the following way. We further introduce

the Cauchy point C, defined as the point where (9)

reaches a minimum along the steepest-descent direction

-VF(U). We then consider the polygonal contour in the

state space obtained by connecting the current update U to

the Cauchy point C, and the latter to the Newton update

N. Such contour is conventionally called the dogleg curve

[10]. It can be shown that the point U+ where the dogleg

curve intersects the trust region boundary provides a good

approximation to the minimum of f [10].

The trust region radius ~ is updated until a reasonable

agreement between f(U+) and its quadratic model (9) is

achieved. The point U+ generated in this way is chosen as

the next iterate.

IV. AN EXAMPLE OFAPPLICATION

Let us consider a typical single-conversion receiver

front-end, consisting of two doubly-balanced mixers ar-

ranged in an image-rejection configuration, a local oscil-

lator, coupling networks, amplifiers, and filters. The band

of operation is 935-960 MHz with a fixed IF of 90 MHz.

The nominal gate and drain bias voltages are VGS = -0.8

V, VDS = 4.5 V. The circuit-level description of the front-
end is very detailed, and includes many (linear) parasitic

components. The total number of device ports is nD = 208,

and the total number of nodes is 1744. The front-end is
analyzed as a single circuit, so that inter-block couplings

that may exist for various reasons such as imperfect isola-

tion or proximity effects may be accounted for without

difficulty. For illustrative purposes, a FET local oscillator

is designed for O dBm output power at 857.5 MHz when

biased at the nominal point and loaded by an ideal 50 Q

resistance. After connecting the LO to the front-end, we

want to determine the bitlucation pattern of the entire
front-end parametrized by VDs, starting from the Hopf

bifi.u-cation where the front-end turnon takes place. We

consider standard operating conditions, with a -50 dBm
RF signal at 947.5 MHz (corresponding to center band)

received by the antenna. The circuit is strongly nonlinear

and has a high gain, so that a relatively extended spectrum
including interrnodulation products of the RF and LO fre-
quencies up to the 8th order is required in the HB analy-
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sis. This results in 72 positive frequencies and 252,880

nodal unknowns. The reference harmonic is selected as

the drain voltage harmonic of the oscillating transistor at

the fimdamental LO frequency, with ~ = O. The Hopf

biiiu-cation H is first located by solving (4) with MR = 0.1

V and the remaining harmonics initialized to zero. The

ordinary backtracking algorithm fails to converge in such

situation; on the contrary, the GMRES/trust region itera-

tion converges smoothly in about 1505 seconds on a SUN

Enterprise 450 workstation, yielding UB = 1.2517 V and

~/2n = 879.4 MHz. Starting from the Hopf bifurcation,

the front-end bifurcation diagram may be easily com-

puted, and is shown in fig. 1 in terms of conversion gain

versus drain voltage. The adopted value of MR belongs to

a parameter range where &@MR may be considered zero

for all practical purposes, Indeed, the accuracy of the

above quoted estimate of uB turns out to be better than

4.10-3. Fig. 2 shows the Hopf bitication locus in the two-

dimensional parameter space (VGs, VD5). The front-end

operation is impossible in the shaded area.
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