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Abstract — The paper discusses a new approach to the
global stability analysis of large nonlinear microwave cir-
cuits for which Nyquist’s analysis is not usable owing to the
size of the characteristic equation. Making use of a Krylov
method for autonomous circuits, a state lying on the bifur-
cated branch close enough to the bifurcation may be effi-
ciently located. The bifurcated branch may then be found by
ordinary continuation.

1. INTRODUCTION

In recent years, the harmonic-balance (HB) technique
coupled with Krylov-subspace methods has gained wide-
spread acceptance as a numerical tool for the analysis of
nonlinear microwave circuits containing large numbers of
devices and/or supporting steady states with discrete
spectra including large numbers of lines [1], [2]. How-
ever, the extension of these techniques to stability analysis
has remained until now an unsolved problem. With har-
monic balance, stability is normally investigated with the
aid of Nyquist's analysis [3], [4]). A Nyquist plot may be
numerically built by computing the determinant of the
characteristic equation for a given steady state as a func-
tion of a perturbing frequency. After suitably parametriz-
ing the circuit, the bifurcations may be located by search-
ing for those combinations of frequency and parameter
values for which the plot contains the origin of the com-
plex plane [3], [4]. When the number of unknowns be-
comes very large, in order to waive the need for storing
and factorizing the Jacobian matrix, HB analysis may be
carried out by Krylov-subspace methods [1], [2]. Unfortu-
nately, these methods do not provide an efficient way of
computing the determinant of a large complex matrix,
which prevents the use of Nyquist’s analysis. In this paper
we propose for the first time a family of algorithms based
on Krylov-subspace HB whereby the fundamental bifur-
cations of a large-size circuit can be efficiently located.
Hopf and period-doubling bifurcations are found by a
Krylov-subspace technique specifically devised for au-
tonomous nonlinear circuits. Regular turning points are
detected by a suitable extension of a switching-parameter
algorithm that was previously demonstrated in conjunc-
tion with ordinary HB.

I1. BIFURCATION DETECTION FOR A LARGE CIRCUIT

Let the circuit be parametrized by some physical or
electrical parameter u. On a given solution path, the bifur-
cating values of the parameter can be found with excellent
approximation by the following approaches, relying upon
Krylov-subspace HB as the basic analysis algorithm.

A. Hopf bifurcations of a DC solution path

In the state space, a periodic solution path bifurcates
from the DC solution path at a Hopf bifurcation [5]. Let us
consider a periodic steady state of fundamental frequency
o belonging to the bifurcated branch. Let E be the vector
of real and imaginary parts of the HB errors, and X the
state vector containing the real and imaginary parts of the
state variable (SV) harmonics. E and X have a same di-
mension N. The HB solving system for such steady state
may be cast in the form

EXX, op, u)=0 1

The normal procedure to be followed in the construction
of the periodic solution path would be to assign the free
parameter u, and to solve then (1) for X, wg. Note that the
circuit is always autonomous with respect to the free os-
cillation, so that oy is always a problem unknown, and the
phase ¢y of a reference harmonic Xy at frequency wy is
indeterminate. ¢y is thus kept fixed to some arbitrary
value, so that the correct number of unknowns is restored.
Within the frame of ordinary HB techniques for autono-
mous circuits, the solution may be found by a Newton
iteration after suitably modifying the state vector [6], or
by resorting to continuation with artificial embedding [7]
(usually, by introducing in the circuit suitable fictitious
sources or “probes”). However, for reasons to be ex-
plained later on, in view of the application to large sys-
tems (say, N = 25,000) we do not want to modify the
structure of the system (1) - specifically, of its Jacobian
matrix. We do not want to use continuation, either, in or-
der to minimize the number of CPU-intensive iterative
solutions of (1). In order to overcome this problem, we
retain the original formulation of the HB system, and re-
move the phase indeterminacy by adding to (1) an auxil-
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iary equation whereby the phase of Xy is fixed to the se-
lected value ¢p. This equation has the simple form

sin(0g) Re[Xg |- cos(op) ImXg]=0 (@

Let us now define My = |Xg|. When the circuit state ap-
proaches a Hopf bifurcation on the periodic solution path,
then simultaneously u — up, @ — g, Mg — 0, where
the subscript “B” denotes the bifurcating values. It is thus
obvious that an approximate evaluation of ug, (g, can be
obtained by searching for a periodic regime having near-
zero M. In other words, we can approximately locate the
Hopf bifurcation by interchanging the roles of My and u,
and treating the former as a known quantity to be fixed to
some suitably small value, and the latter as a further
problem unknown. Once again, this can be done by add-
ing to (1), (2) a further auxiliary equation of the form

Re[Xg ]? + (ImXz D? - ME =0 )

In summary, the Hopf bifurcation can be approximately
located by solving the nonlinear system of N + 2 equa-
tions in as many unknowns X, g, u

E(X, g, u) =0
sin(9g ) Re[Xg |- cos(dg) ImXgl=0 @
Re[xg I? + (Im[xg )* - M} =0

Note that My cannot be set to zero, since the Jacobian
matrix would then become singular. Nevertheless, Hopf’s
theorem shows that du/dMy = 0 at criticality [5], which
implies that the bifurcating parameter value ug can be
determined with excellent accuracy making use of rela-
tively large values of Mg. The Jacobian matrix of (4) has
the form

)

In (5), Jgx = JE/0X is the N x N Jacobian matrix of the
standard HB system (1), JE/dw; and JdE/du are column
vectors of size N, and R is a 2 x N matrix that can be
readily obtained by inspection of (4). In the solution of (4)
by iterative methods, most of the CPU time is spent in the
multiplication of J times a sequence of real vectors [8]. In
turn, due to (5), the dominant contribution to the cost of
this process is given by the multiplication of Jgy, which
can be accomplished by the efficient algorithms already
demonstrated for the non-autonomous case [2]. The over-
head due to the increased number of equations of (4) with
respect to (1) is only 2N + 4 flops (1 flop = 1 floating-
point multiplication plus 1 addition), which is practically

negligible when N exceeds a few thousand. In this way a
Hopf bifurcation may be efficiently located by a single
inexact Newton iteration [2]. A similar algorithm can be
used to detect the Hopf bifurcations of periodic solution
paths. This technique is fast enough to allow the direct
computation of Hopf bifurcations loci in a two-dimen-
sional parameter space, which may often provide a useful
support to the solution of design problems [9].

In order to accurately locate the bifurcation it is neces-
sary that the analysis algorithm exhibits good convergence
properties in a range of values of My where du/dMy, = 0,
which normally means, quite close to the bifurcation.
When using a Krylov-subspace technique to solve the
system (4), this may not be true for the GMRES iteration
associated with an ordinary polynomial batracking scheme
[8] because the Jacobian matrix tends to be ill-conditioned
in the neighborhood of the bifurcation. For this reason a
novel trust-region algorithm [10] was implemented to in-
crease the robustness of the Krylov-subspace solution
method in the vicinity of a singularity of the Jacobian ma-
trix. This algorithm is briefly discussed in section I1I.

B. Period-doubling bifurcations

A period-doubling (I-type) bifurcation of a periodic
solution path [5] can be found by a similar algorithm. In
this case wp = ©0g/2, where g is the source frequency, so
that the unknowns are X, u. Furthermore, the frequency
division process is coherent, so that in this case there is no
phase indeterminacy, and ¢y is a problem unknown. The
nonlinear system used to locate the bifurcation thus be-
comes

g _
E(X, =%, u)=0 ©)

Re[Xg ]* + (m{xg )* - ME =0

In tumn, the Jacobian matrix is obtained from (5) by sup-
pressing the second column (and the first row of R). The
rest of the preceding discussion remains valid.

C. Regular turning points

In principle, regular turning points could be automati-
cally detected during the construction of a solution path
by ordinary continuation, since ||Du/DX]|| = 0 at these
points (D denotes the derivative taken along the solution
path). However, at turning points the harmonic Jacobian is
singular [5], so that these points cannot be approached by
an analysis technique based on the Newton iteration. An
efficient way of circumventing this problem is to perform
a parameter switch near criticality, i.e., to replace u by a
different parameter whose derivative does not vanish at
the turning point [11]. A convenient choice is to use once
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again the magnitude My, of the reference harmonic. If the
system is autonomous ®p is unknown, so that the HB
system to be solved in the neighborhood of the bifurcation
is (4) with an arbitrary constant value of ¢p. If the circuit
is forced, wgp represents the forcing frequency (or the
vector of independent forcing frequencies for a multitone
regime) and is a priori known; the solving system is then
obtained from (4) by suppressing the second equation. In
both cases, u becomes a problem unknown and My, plays
the role of a known free parameter to be stepped across a
suitable range containing the critical point. In order to
detect the condition of approaching criticality, the quantity
0 = ||Dw/DX]] is monitored during the construction of the
solution path. The parameter switching is automatically
activated when & drops below some empirically defined
threshold, and is suppressed in the opposite condition.

II. A GLOBALLY CONVERGENT TRUST-REGION
ALGORITHM

In order to improve the robustness of nonlinear solvers
based on GMRES or similar iterative algorithms, a one-
dimensional minimization of the error vector norm along
the Newton update direction (backtracking) is usually
carried out after each Newton step [8]. Nevertheless, for
relatively ill-conditioned problems this approach may fail,
and more robust search schemes must be implemented in
support of the Newton iteration. A possible solution is to
resort to the trust-region algorithm discussed in this sec-
tion {10]. Let us rewrite the solving system (either (4) or
(6) according to the previous discussion) in the unified
form

F(U)=0 Q)

In a neighborhood of a generic iterate U, we may replace
F by the linear model

F(U +d) ~ F(U) + J(U)d ®

where d is a sufficiently small increment. In turn, from (8)
we obtain a local quadratic model of the scalar function to
be mintmized

fU+d) = -;-F“(U+d)F(U+d) ~

= % FY(U)F(U) + F*(U)J(U)d + % d"JT(U)JU)d

®

where ' denotes transposition. The spherical domain of
radius T where (9) represents a reliable approximation will
be called a trust region. Let us denote by N the Newton
update generated by the GMRES iteration. If |[N-U|| < =,

then d = N-U minimizes (9) within the trust region. Oth-
erwise the increment d that minimizes f within the trust is
given by [10]

ag =-praysw +pl st Ew) (o)

where I is the identity matrix, for the unique p > 0 such
that |[d(W)i| = .

In practice, since [ cannot be computed exactly, d(u) is
approximated in the following way. We further introduce
the Cauchy point C, defined as the point where (9)
reaches a minimum along the steepest-descent direction
-VF(U). We then consider the polygonal contour in the
state space obtained by connecting the current update U to
the Cauchy point C, and the latter to the Newton update
N. Such contour is conventionally called the dogleg curve
[10]. It can be shown that the point U, where the dogleg
curve intersects the trust region boundary provides a good
approximation to the minimum of £ [10].

The trust region radius T is updated until a reasonable
agreement between f(U,) and its quadratic model (9) is
achieved. The point U, generated in this way is chosen as
the next iterate.

IV. AN EXAMPLE OF APPLICATION

Let us consider a typical single-conversion receiver
front-end, consisting of two doubly-balanced mixers ar-
ranged in an image-rejection configuration, a local oscil-
lator, coupling networks, amplifiers, and filters. The band
of operation is 935 - 960 MHz with a fixed IF of 90 MHz.
The nominal gate and drain bias voltages are Vg = -0.8
V, Vpg = 4.5 V. The circuit-level description of the front-
end is very detailed, and includes many (linear) parasitic
components. The total number of device ports is ny, = 208,
and the total number of nodes is 1744. The front-end is
analyzed as a single circuit, so that inter-block couplings
that may exist for various reasons such as imperfect isola-
tion or proximity effects may be accounted for without
difficulty. For illustrative purposes, a FET local oscillator
is designed for 0 dBm output power at 857.5 MHz when
biased at the nominal point and loaded by an ideal 50 Q
resistance. After connecting the LO to the front-end, we
want to determine the bifurcation pattern of the entire
front-end parametrized by Vpgq, starting from the Hopf
bifurcation where the front-end turnon takes place. We
consider standard operating conditions, with a -50 dBm
RF signal at 947.5 MHz (corresponding to center band)
received by the antenna. The circuit is strongly nonlinear
and has a high gain, so that a relatively extended spectrum
including intermodulation products of the RF and LO fre-
quencies up to the 8th order is required in the HB analy-
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sis. This results in 72 positive frequencies and 252,880
nodal unknowns. The reference harmonic is selected as
the drain voltage harmonic of the oscillating transistor at
the fundamental LO frequency, with ¢p = 0. The Hopf
bifurcation H is first located by solving (4) with My = 0.1
V and the remaining harmonics initialized to zero. The
ordinary bactracking algorithm fails to converge in such
situation; on the contrary, the GMRES/trust region itera-
tion converges smoothly in about 1505 seconds on a SUN
Enterprise 450 workstation, yielding ug = 1.2517 V and
/21 = 879.4 MHz. Starting from the Hopf bifurcation,
the front-end bifurcation diagram may be easily com-
puted, and is shown in fig. 1 in terms of conversion gain
versus drain voltage. The adopted value of My belongs to
a parameter range where du/0Mp may be considered zero
for all practical purposes. Indeed, the accuracy of the
above quoted estimate of up turns out to be better than
4.10°3. Fig. 2 shows the Hopf bifurcation locus in the two-
dimensional parameter space (Vgg, Vpg). The front-end
operation is impossible in the shaded area.
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